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Abstract——This paper presents various patterns and computer art from three extensions to common fractal
methods: Here, I use discontinuous functions (such as Boolean functions and the conditional function),
plots of root-finding methods other than Halley’s and Newton’s methods (such as Aitken's and Muller’s
methods), and fractals produced using arithmetic in g-systems other than the complex number system. Still
fractal images and parametrization “movies” are discussed; these allow several new properties of these
algorithms (and their combinations) to be uncovered. Also, the interaction of randommness with fractals is

explored.

I. INTRODUCTION

The advent of high-speed computers and graphical
display devices has made possible the recent plethora
of images produced by chaotic algorithms (see [1-31,
and references therein). Two common methods of
producing fractal images involve Julia sets{4, 5] and
root-finding method plots (e.g., [6]). These fractals
are usually produced by iterating a function employing
a small set of mathematical operations (arithmetic, and
sometimes trigonometric functions ) which are defined
within the complex number system. In this paper, I
demonstrate two extensions of these methods, explore
the interaction of Julia sets with randomness { noise),
and show fractals associated with several types of root-
finding methods.

2. THE BASIC FRACTALS

2.1. Algorithms

Julia sets are produced by viewing points in the R?
plane as complex numbers and plotting the behavior
of a function that is recurrently applied to each number
in turn. These sets have applications in the study of
phase transformations[7, 8], dynamical systems|9,
10}, and developmental biology[11]. The basic Julia
set algorithm used in this paper will be that defined by
[12]. This is an escape-time fractal (where the escape
value is given by the constant ¢ and is typically on the
order of 100.0), and the pseudo-code (for a display
using 8 colors and a black background) is as follows:

for each point (x, y) in some range minx<x<max.x,
miny<y<maxy, with constant ¢, and a complex func-
tion f{ ),

the color of pixel [x, y] is determined as follows:

Z = x+yi
for g from 0 to 15 in increments of 1:
z = f(z,c);
if |z{>e, break loop.
if |real(z)| <e or |imaginary(z)| <e, color = g mod
8,
otherwise color = black

Root-method plots (e.g., [6, 12, 13]) are produced
by considering how fast a particular iterative root-find-
ing method (such as Newton’s method ) converges on
a root for a given function, when it is started with an
initial guess x + yi. The rate of convergence determines
the color of each point (x, y) and results in a fractal
when a set of points in the R ? plane are taken, in turn,
as the initial guesses. The basic algorithm is as follows:

for each point (x,y) in some range minx<x<maxx,
miny<y<maxy, and a complex function f( ),
the color of pixel [x,y] is determined as follows:

z = x+yi
for g from 0 to 50 in increments of 1:
z=J(z);
if |(real(z,)*+imaginary(z,)?) — (real(z, )’
+imaginary(z,.;)?)| < ¢ then break;
if |(real(z,)’+imaginary(z,)®) — (real(z,,)>

+imaginary(z,_,)?)| < ¢ and g is even,
then color = g mod 8,
otherwise color = black

In this algorithm, convergence is considered to have
occurred when the difference between the current
“guess” and the previous one is smaller than the con-
stant ¢ (usually on the order of 10™°). The function
being iterated, &J( ), depends on which root finding
method is being used. In the two for which fractal plots
have been described in the literature, Newton’s method,
and Halley’s method, the function & for an equation
F( ) in complex numbers is as follows:

Newton’s Method
F(z,
Znt1 = Zp — A'F,_gjt;;—
Halley’s Method

N F(z,)
L+l L ) F”(Z,J'F(Z,,)
Fiz) — | ———
2-F'(z,) |
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Other methods, such as Stephenson’s, Aitken’s, and
Muller’s methods, are given in [14] and can be used
with the above algorithm,

2.2, Implementation

These algorithms are easily coded in C, and run on
any workstation with a graphical display. For this pro-
ject, a library of complex number functions was pro-
duced, which defines all common functions (arith-
metic, trigonometric, hyperbolic trigonometric, inverse
trigonometric, logarithmic, exponential, efc.) for the
complex data type. Because of the large numbers of
pixels involved, and the many floating-point operations
that have to be performed for each point (especially
for Muller’s method), a high-resolution plot is very
time-consuming. However, these algorithms are ideally
suited for SIMD (single instruction, multiple data)
parallel architectures, since each point’s color can be
computed independently of the others. Thus, on the
Connection Machine 2 (a SIMD parallel computer
made by Thinking Machines Corp.), a plane of points
can be computed in almost the same time it takes to
compute a single point on a conventional machine.
For the purposes of the studies described in this paper,
the algorithms were implemented in C* (a parallel
version of C), and run on the CM-2, with all points
being computed in parallel. The software also included
a dynamical parser package: functions entered by the
user were parsed, and a dispatch table constructed. This
allowed entry of functions at run-time, without re-
compiling the code.

The fact that whole planes of points could be com-
puted in seconds of real-time also made it possible to
produce animated parametrizations. Most commonly
available fractal videos consist of a static fractal shape
and a cycling color-map (though there are exceptions,
such as those produced by Homer Smith, Robert De-
vaney, and Heinz-Otto Peitgen). More interesting is
the ability to take a function and to produce an ani-
mation on videotape where each frame of the movie
consists of a fractal of the function where one of the

Fig. 1a. Julia set, x: 1.3 — 4.7, y: 1.0 — 4.0, z = sin(z) + &*
+ 5 — 0.27; imit = 100.0.
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Fig. 1b. Juliaset, x: —1.2 = —0.2, y: 0.1 = 1.4,z = conj{z)*>
+ jzi* + v

parameters is slowly changed. For example, one can
test to see how varying the parameter ¢ from 2.0 to
10.0 alters the Julia set or root-method plot of f(z) =
z* + sin(z) by producing a movie where each frame
uses a slightly different value of a. It is also possible to
smoothly convert between two fractals f( )andg{ )
by making each frame the fractal plot of a-f(z) +
(1 —a)-g(z)asagoes from 1 to 0. Finally, it is possible
to make movies of slowly varying relaxation parameter
A (in root-method plots), and of slowly-changing
g-systems (see below) . The movies produced from or-
dinary fractal formulas are quite striking; it is impos-
sible to do them justice on paper, but several interesting
results can be observed by such parametrizations.

2.3. Sample images and observations on the Julia sets

In general, the algorithms discussed in this paper
represent mappings between elements in the set of
possible functions (“set #1”°), and the set of possible
morphologies (“set #2”°). In order to study the prop-
erties of the members of the first set, it is often useful
to pick natural and simple formulas (e.g., [5]). In this
paper, I am instead concerned with exploring some of
the members of the second set, as well as the properties
of the algorithms them selves. Thus, no attempt is made
to choose functions that are natural, simple, or have
an immediate application to any specific scientific
problem.

Some sample images using the Julia set algorithm
are seen in Figs. 1-8. [12, 15, 11] show a wide variety
of morphologies that can be produced by this algo-
rithm. In general, colors do not merge——there are many
instances of borders demarcating separate structures.
Many objects possess a definite inside and outside.
There are almost no straight lines; curves predominate.
Repeated magnification reveals ever more intricate
detail, but almost every function possesses a top-most
view—a scale beyond which nothing happens. There
are also recurrent spatial motifs. A large percentage of
the formulae result in a circular form, with big spikes
at its lowest magnification, with different things being
seen in the center as one zooms in. Formulae occur in
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Fig. 2. Julia set, x: —1.55 = 0.55, y: —0.77 — 171,z =
0.1+2% + 0.9 -sin{z) + 2 — 3i; limit = 60.0.

Fig. 5. Juliaset, x: —1.2 = 1.0, y: ~1.2 = 1.2, z = ¥/<s(®) 4
reverse(z)*%; limit = 100.0.

Fig. 3. Julia set, x: —2.5 —> 2.5, y1 =2.6 = 2.6, z = 2% +
1.0/(log(sin(z)); limit = 100.0.

Fig. 6. Julia set, x: ~0.472 — —0.205, y: 0.7128 —» 0.996, z
= {z® + sin(z))/z>%; limit = 100.0.

Fig. 4. Julia set, x: —2.62 — —2.55, y: 3.572 - 3.694,z =  Fig. 7. Julia set, x: ~1.3 = 1.3, y: =1.0 — 1.0, 2% + 2 +
Z!/97) e limit = 100.0. ~0.7 + 0.4, limit = 100.0.
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Fig. 8. Julia set, x: =3.3 — 3.6, y: =3.66 — 3.6, z = (e?)3?
+ conj(z)®®, limit = 100.0.

families, with similar overall morphologies. For ex-
ample, formulae in purely =" where n is a small (1 <
n < 10) positive real number result in circular forms
with spikes, while formulas in sin{z) result in hori-
zontal tubular forms, with repeated segments and wavy
outer boarders. Note the contrast between the sharp
morphologies of Figs. 1-6, and the confused internal
arrangements (and failure of layers to join) of Fig. 7.
There is also a clear (though difficult to formalize)
distinction in the structuredness of various formulas
{for example, compare Figs. 1-6 and 8 to Fig. 9).

These fractals possess interesting symmetry char-
acteristics (Lakhtakia[7]). Some images contain re-
peated segments (Fig. 1a). Many parts of some images
are self-similar (Fig. 6). They are not exactly repeated
units, nor are they as repetitive as most Mandelbrot
set images. There is usually some top-level shape,
within which there are self-similar structures. Some
images are symmetrical along one axis (as in Figs. 3,
8, and 9). Many are radially symmetrical, or pseudo-
symmetrical (Figs. 1a, 1b, 2, and 6). Others, such as
Fig. 5, seem to be bilaterally symmetrical along one
axis, but possess one or more discrete features which
spoil the symmetry. Still others (such as Fig. 7) are
not symmetrical at all. It was also seen that adding a
constant to formulas of the type z = z (so that it
becomes z = z" + v) tends to disrupt symmetry.

Parametrization studies show that these algorithms
display several interesting properties. Movies that are
made by having each frame represent the Julia set (or
root-method plot) of a complex function f( ) with a
slightly different value for some parameter, show
smooth morphological changes as a function of time.
Since the parametrizations are linear (i.e., a parameter
changes by a constant amount between frames), dif-
ferent rates of changes in morphology observed are a
natural property of the parametrization.

It is seen that, in general, most movies consist of
periods of slow, smooth, continuous change inter-
spersed with periods of very rapid major changes.
Throughout, it is seen that certain structures {usually,
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the outermost layer) stay relatively constant in shape.
Most movies show a shape that is generally static in
size, while some have periods of growth. Some movies
eventually settle down to a state where they change
very little, though even in this state, very minor mod-
ifications can be seen from time to time. The movies
show a clear avoidance of disjoinment of layers (though
they often expand and contract to smoothly join with
other layers).

These movies are in general quite striking. For ex-
ample, one movie (x: —~2.010 2.0, y: —2.0 to 2.0, limit
=1000,z=a-(z*+z%) + (1.0 —a)-z%° + 0.5, 400
frames determined by the variable a going from 0.0 to
1.0) consists of a number of layer subdivisions and
fusions, and rotations of internal components. About
75% of the way through, a small part of the interior
(on both sides of the axis of symmetry) acquires its
own independent outer layer, moves outward, breaks
through the outermost layer of the main figure (which
then slowly rejoins to seal perfectly ), moves away, and
eventually disintegrates. Other movies display defor-
mations of structures through bending, duplications,
elongation, eic., alternating periods of motion and
stasis, contraction and expansion, efc. Even with a
constant-size change in the parameter, each movie has
its own characteristic rate of change.

The fact that it is possible to make these movies is
interesting in itself. The functions themselves are highly
nonlinear (i.e, they are chaotic— | f{x) — f{x + Ax)}]
is large even for small Ax), and it was a surprise to
the author to discover that a relatively large step size
is enough to produce a smooth transition between
frames, resulting in a continuous movie. It may have
been the case that given the nonlinear nature of these
functions, small changes in the function produced im-
ages that were very different, thus making it impossible
to produce a smoothly changing movie.

In making movies which slowly convert between two
different formulas, different step sizes are needed to
produce continuous movies between different shapes.
That is, there are shapes which easily morph into one
another, and there are shapes which do not (for ex-

Fig. 9. Juliaset, x: —=1.5 — 1.5, y: —1.5 = 1.5,z = z*°, limit
= 20.0.
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ample, the shape produced by z = sin{z) is very difficult
to convert into z°°). Thus, these morphologies form
“natural kinds,” the closeness of which is defined by
the grain size needed to smoothly convert from one
image to another. This is a higher-order property of
the morphology, and cannot be determined directly
by inspection from the formula itself (no regularity
has been found in a large series of experiments). Also,
even though the parameter is being changed in a linear
manner (for example, a goes from 0.0 to 1.0 in equal
intervals), such movies often display nonlinear trans-
formations between images (i.e., one image may be
displayed unchanged for 95% of the movie, and then
suddenly morph into the other one at the very end).

2.4. Randomness and Julia sets

So far, the algorithm has assumed that z coordinates
(positions) are given exactly. Some interesting results
can be obtained when this is altered by letting some
components of the function have access to exact po-
sitions, and others to have access to randomly-altered
positions. The algorithm then becomes: { pixel z’s color
= J(z, z+ Az)} where Az is random. Fig. 10a shows
the morphology of z = z*°. A plausible initial hy-
pothesis as to what would happen if one added a small
random offset to each point value is that the overall
shape would be the same, but would be more fuzzy
and diffuse, with less precise detail. Interestingly, this
is not what happens. Fig. 10b shows the function z =
(z + Az)*°, where each Az = z + a random number
of range log(z). Observe the fact that part of the image
is completely untouched, while another part is dupli-
cated and spatially shifted. One of the copies is more
diffuse than the other.

Fig. 11a shows the morphology produced by z = z*
+sin(z) — 26i. Note the sharp and well-defined edges,
but lack of horizontal or vertical straight lines. Fig. 11b
shows the same thing done with each Az = a random
number of range %z, raised to the 0.01th power). Note
the fact that the interior detail has been obiliterated by
a clear rectangle; note also the “picture-frame” rect-
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Fig. 10b. Julia set, x: 5.0 — 5.0, y: =50 — 5.0,z = {z +
rand(log(z)))*°, limit = 100.0.

angle of fuzzy pattern around it, and the perfect {un-
changed ) detail outside that. It is interesting that adding
a random component to these functions can produce
a straight edge, where there was none before.

Thus, errors in reading the positional information
field produce much more complicated effects than just
fuzziness in the resulting image. They can result in
multiple copies of certain parts of the morphology, as
well as complicated spatial patterns of regions of im-
precise and precise structures. Some regions of the field
are very resistant to perturbations; some are not. In all
cases, there is a tolerance to such influences, since the
results remain the same over a wide range of magni-
tudes for the influences.

2.5. Basic root-method plots
Figs. 12 and 13 show typical Halley’s method plots.
Fig. 14 shows a typical Newton’s method plot. The

Fig. 10a. Julia set, x: —=5.0 — 5.0, y: ~5.0 == 5.0,z = 735,
limit = 100.0.

Fig. 1la. Julia set, x: —=2.5 — 2.5, y: =2.5 = 2.5,z = z* +
sin{z) ~ 26/, imit = 100.0.
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Fig. 11b. Juliaset, x: =2.5 ~ 2.5, y: =25 = 2.5,z = 2% +
sin{z) — 26, limit = 100.0.

basic characteristics of these have been described[6,
12, 13]. Several interesting things can be seen when
movies are made using the same algorithm as above.
Firstly, it is seen that changing the lambda relaxation
parameter makes movies that look like progressive
zoom-ins into the center of the plot. In general, the
movies are very striking, with many complex defor-
mations. It is interesting to note that for movies made
using Halley plots (but not for any of the other methods
described in this paper), the following form has a very
special characteristic: when a movie is made using the
equation z = cos(z° + ¢) — ¢, and ¢ is varied from 0.0
to 40.0 in the course of the movie {made over the
section of the plane x: 1.13 — 2.02, y: 0.55 — 1.204),
the movie contains no deformations. Instead, it looks
as if one was moving at varying speeds with a fixed-
size viewport over an unchanging (static) image. In
contrast to this linear translation effect, all other movies
show clear deformations in place (structures expand
and contract, there is bending and shearing, efc.). By
experiment, it is seen that this is a property of the forms

Fig. 12. Halley plot, x: =5.0 — 5.0, v: =5.0 = 5.0,z = z**
- 1.

Fig. 13. Halley plot, x;: 1.137744 — 2.021231, y: 0.554824
- 1.204, z = sin(z).

z=cos{z" + ¢)— cand z = sin(z” + ¢) — ¢ for small
n, but not of z = cosh(z” + ¢} — ¢ or z = sinh{z" +
¢) — ¢, nor of any other formula found so far.
Extension 1: Other root-finding methods

Other root-finding methods can be found in
Grove[14]. These can be extended to the complex
numbers. Of these, Newton’s method is the least com-
putationally demanding; Halley’s method is interme-
diately so. Muller’s method and Stephenson’s methods
are the most demanding. Figs. 15-17 show some other
sample root method plots. Each method has certain
individual characteristics. For example, Newton and
Halley plots are usually quite similar. Stephenson plots
contain much empty space and separated islands of
color, and occasionally the “bull’s-eye” patterns found
in Newton and Halley plots. Muller plots contain many
small whirl-like regions. Aitken plots often contain very
fuzzy areas (these are regions where points of different
color intermix, without any large solidly-colored re-

Fig. 14. Newton plot, x: =5.0 = 5.0, y: =5.0 = 5.0,z = z**
. + sin{z).
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Fig. 15. Stephenson plot, x: =2.0 - 2.0, v: 0.0 = 2.0,z = 2°
-+ 0.5.

gions). Movies made with these methods are visually
very impressive (especially Muller plots).
Extension 2: Discontinuous functions

Most fractals are drawn using the common functions
(rows 8-9 of Table 1). However, other functions (such
as trigonometric and hyperbolic trigonometric) can be
defined over the complex number data type (rows 6—
7 of Table 1). In addition, it is possible to define dis-
continuous functions such as the Boolean (logic)
functions, and some others (rows 1-5 of Table 1) over
the complex numbers. In these cases, True and False
are defined as being precisely equal to 1.0 and 0.0,
respectively.

These can then be used to produce fractal images
(as Julia sets, or root-method plots) of a much wider
range of complex number functions. One last and very
powerful addition to this function set involves the
“cond” function. This is defined as the standard LISP
(cond a b ¢) function form, which returns “b” or “¢”
depending on whether the parameter “a” is True or
False. This function allows one to section the plane.
For example (in LISP notation), “z = (cond (r < 7,
3)(sin z) (pow z 3.0))”, applies sin{z) to the x < 3.0

S Frygi

S :

Fig. 16. Aitken plot, x: 0.0 — 4.0, y: 0.0 — 4.0, z = sin{(z).

Fig. 17. Muller plot, x: —=2.5 — 2.5, y: =2.5 = 2.5,z = z* +
sin{z).

part of the complex plane, and z° to the rest of the
plane. Note that the “cond™ function violates assump-
tions of analyticity used in the theory of Julia sets. This
makes analysis of functions using it more difficult;
however, it allows one to simulate systems which in-
clude a choice component at each iteration (e.g., [11]).

When using functions which perform a choice (such
as “cond,” “min,” “max,>” efc.), it is useful to have
them keep track of and display the ratio in which the
two choices were given, during a particular image. This
is because sometimes such a function always returns
the same choice, and can thus be simplified, reducing
compute time (for example, the function “(minz0)”
will always return “0” if z stays positive ). Figs. 18-20
show some examples of Julia sets and root-method
plots produced with discontinuous functions.
Extension 3: i-systems other than i? = —1

The last extension to the common fractal methods
involves alternate g-systems[20]. Number systems in-
volving numbers of the form a + bi can be defined by
addition and multiplication rules which operate on
these numbers and satisfy certain constraints (for ex-
ample, that addition and multiplication must be com-
mutative and associative, and that multiplication must
be distributive over addition). These rules, however,
do not constrain the value of /? to any particular num-
ber. In the ordinary complex number system, i° is made
to equal — 1. However, it is possible to define consistent
number systems with /2 being equal to arbitrary p +
qi. This defines the character of the system and deter-
mines the properties of operations within it. It turns
out that there is not an infinite number of such systems,
but that each system can be reduced to one of the fol-
lowing cases:
e numbersa + bi with /2 = —1 (the complex numbers),

e numbers a + bi with /° = 1 (the “double” numbers),
e numbers a -+ bi with i? = 0 (the “dual” numbers).

Nevertheless, it is possible to define all common
complex number functions (such as arithmetic, trig-



880 M. LEVIN
Table 1. Functions defined over the complex data-type.
1 r>r<,1r= Decide whether the real part of the first argument is greater/less/equal to
that of the second, and return | + 0i if so, 0 + 07 otherwise.
2 i> i<, i= Decide whether the imaginary part of the first argument is greater/less/
equal to that of the second, and return 1 + 0/ if so, O + 0/ otherwise.
3 and, or, not, xor Standard binary functions which return 1 + 07 for True, 0 + 0i for False
4 Teverse a -+ bimapstob + aj
5 min, max Returns the minimum and maximum of 2 complex numbers
6 conj Complex conjugate
7 sin, cos, tan, sinh, cosh, Ordinary, hyperbolic, and inverse trigonometric operations
tanh, sin”™!, cos™!, tan™!,
sinh™!, cosh™!, tanh™'
log, loglQ, pow Logarithms and complex powers
9 +, =, +, - Standard arithmetic operators
10 cond If argument #1 is True, return argument #2, else, return argument #3

onometric functions, powers, eic.) over any arbitrary
g-number system. The definitions are performed as
follows:

For a number system with arbitrary A and B such
that g> = A + g(2B) (the factor 2 is there just to sim-
plify the results), the numbers have two individual
terms to which expansion formulas can be applied ( for
example, sin{a + b/) can be simplified to functions of
a and b/ using the regular sine expansion formula).
Defining addition and subtraction is easy since one
only has to add and subtract like terms, and neither A
nor B is involved since ¢ is never squared. Thus,

(a+gb)+(ctgd)=(a+c)+g(b+d),
(a+gb)—(ctgd)=(a—c)+q(b—d).

Multiplication isn’t much harder since the distributive
law can be used to give:

(a+gb)-(c+gd)
=a-c+b-c-g+dra-g+b-d-g°,

Fig. 18. Juliaset, x: =5.0 = 5.0, y: =5.0 = 5.0,z = (z + (r
< ZZZ))—OASA

collect like terms:
acc+(b-c+d-a)-g+b-d-g?,
use the definition of g2:
a-c+(b-c+d-a)-g+b-d-(A + 2Bg),
collect like terms:
(a-c+b-d-A) +(b-c+d-a+b-d-2B)- 4.
Division becomes:
(x+aqy) +(u+aqv)
= (ux + 2Bvx — Avy)/(u® + 2Buv — Av?)
+ (uy — vx)/(a® + 2Buv — Av?)g

Sines, cosines, and hyperbolic sines and cosines are
slightly more tricky. All g-systems can be classified on
the basis of the A and B values used in the definition

of g%:

Fig. 19. Newton plot, x: —5.0 = 5.0, y1 =5.0 — 5.0,z =
(cond(r < |z]2)sin{z)z?).
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Fig. 20. Julia set, x: ~5.0 = 5.0, y1 =5.0 = 5.0,z =z +
Z((r<sin(z)z)/z)v
systems with B? + A < (0
are isomorphic with the i-system where % = —1,

systems with B?+ A =0

are isomorphic with the l-system where /% = 0,
systems with RB?+ A >0
are isomorphic with the h-system where #° = 1.

The i, I, and h-systems are the classical systems. To
find the expression for f(a + bi) in an arbitrary ¢-
system, one must convert that problem to a problem
involving one of the classical systems. This is because
all the common functions have easy definitions in the
classical systems. For each g, there is a classical § which
behaves just like ¢. Thus, one must find an expression
for g in terms of the classical §, with which it is replaced:

D = {sqrt(—(B* + a))
or lorsgri(B? + A)} forthedi, |,

g=B+§-D where

and h systems respectively.
The transformation is later reversed (express the §
in terms of q) by:

§=-B/D+g-1/D

For exampile, to find sin(x + gy):
a. replace g with the classical § getting: sin{x + (B +
G-Dy)-y)
b. collect like terms inside the sine function: sin(x +
B:y+§-D-y)
¢. use the sine addition formula, getting:

sin{x + B-y)-cos{G-D-y)
+cos{x+ B-y)-sin(G-D-y).

Now, using the power series for sines and cosines,

we find sin{ ) and cos{ ) for imaginary values in

classical systems:

sinh{(D-y)
sin{(g-D-yy=4§4-{D-y 5
sin{D.yp)
) sinh(D-y)
+cos(g-D-yy=¢g-{ D-y
sin{D-y)

for the i, 1, and h systems respectively. Substituting
those definitions for the terms involving imaginary
sines and cosines in {(¢) above, we get:

cosh{D-y)
sin{x +gy) =sin{x + B-y)-{1
cos(D-y)
sinh(D-y)
+cos{x+B-y)-g-sD-y
sin(D-y)

Now, § is replaced by the expression in terms of ¢
given above (§ = —-B/D + ¢-1/D):

cosh(D-yp)
sin{x + gy) = sin{x + B-y){ 1
cos(D-y)
B sinh(D-y)
- E~cos(x + B-y)s D-y
sin(D-y)
I sinh(D-y)
+ q~—D—-cos(x + By} D-y
sin(D-y)
Likewise:
cosh(D-y)
cos{x +gy)=cos{x+ B-y)i1
cos(D-y)
B sinh(D-yp)
+ B-Sin(x + B-p){ D-y
sin(D-y)
1 sinh(D-y)
——q-B-sin(x—FB-y) D-y ,
sin(D-y)
cos(D-y)
sinh{x + gy) = sinh(x + B-y){ 1
cosh(D-y)
B sin(D-y)
- B-cosh(x + B-y)y D-y
sinh{(D-y)
1 sin(D-y)
+q-5-cosh(x+8-y) D-y .
sinh(D-y)
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‘ fcos(D'y)
cosh{(x + gy) = cosh{x + B-y){ 1
cosh(D-y)
B sin{D-y)
— B-Sinh(x +B-y)y Dy
sinh{(D-y)
1 sin{D-y)
+ q-—5~sinh(x + By D-y
sinh(D-y)

Thus, the procedure for computing sin(x + vg) is
as follows (given that one knows the A and B which
define the g-system):

. compute B? + A and determine which of the i, |,
or h systems is being used. Use this to compute D.

. Now, use the knowns, x, y, B, and D, and the ap-
propriate system (picking out the right one of the
vertically written possibilities) to determine the
value of the function.

2

To compute exponentials (base e), the following results
are used:

e = cos{w) + i-sin{ea),

e¥=14+1/aqa,

e ah

i

cosh{a) + A-sinh(a),

substituting § for g: e*9 = gx*By+d-Doy
using the law of exponents: e*™% g3 0¥,
substituting e 'Y for the identities above:

cos(D-yp) sin{(D-y)
B . +e;+3.y'é’ Dy ,
cosh(D-y) sinh(D-y)
substituting back for § in terms of ¢:
ex+qy
cos(D-y) g |sin(D-y)
=evaB-y_ 1 PR, D.y
cosh(D-y) sinh(D-y)
i sin(D-y)
—{-q.B.gX"LB‘«". D-y
sinh{D-y)

Complex powers can likewise be extended. To com-
pute (x + yi)i:

r=sgrt(|x*+ 2-B-x-y— A-y*])
note that:

for B?+4+ A =0, §isdefined only when
Xx+By>0
for B?+ A >0, #isdefined only when

X+ By >sqrt{B>+ A)- |y]

. LEVIN

for B*+ A <0, 8isundefined when

x+B-y=0 and y=0

for these three cases, the definition of § is as follows:

f tan“ ._2..:‘3}.._ )
(x+ B-y)

Dy

=

(x+ B-y)

D-
tanh "’( J )

(x+B-p)

\

because of the peculiarities of tan™'( ) in picking
which angle to return, several adjustments are necessary
for the first case (B? + A < 0):
if x+B-y>0Q,

then 8 is exactly as given above { Ist tier of column),
if x+B-y<0 and y#0,
+H(y/lyl)-m/D,
f=x/D,

¢ is as given above,
if x+B-y<0 and y=0,
if x+B:y=0 and vy #0,
6= C(y/ly)-=/(2-D),

if x+B:y=0 and y=0,

# is undefined (as already mentioned above).

then,

(X + yi)(u+vi) - eu(ln(r)—Bv9)+A-v-@+q(v(ln(r)+B»9)+u-0)

or, one can get r and 6, define the logarithm as below,
and then use the fact that z% = e¥ ™%,

Using the r and # as defined in Part 6 above, loga-
rithms are computed as:

In(x + gy) = In(r) — B-theta + g- theta

The complex number system is by far the most often
used. However, the others also have applications in
physics [16~19]. To my knowledge, all widely available
fractal images to date are produced using the rules of
the familiar /> = — | complex number system. Having
generalized the library of common and discontinuous
functions to all g-systems, it is possible to produce
fractals in other systems. These systems involve op-
erations whose properties differ from those defined un-
der i? = —1, and the fractals produced often look very
different from their /%> = —1 counterparts.

To study the properties of various fractals in other
number systems, the complex number library was ex-
tended to allow operations under any system of the
form i? = p + gi. Figs. 21-24 show several Julia set
and root-method plots produced in various g-systems.



Discontinuous and alternate g-system fractals

Fig. 21. Julia set, x: =2.5 = 2.5, y: =2.12 > 2,12,z = 2% +
0.5, i*=—1.0.

Fig. 23. Julia set, x: —4.0 — 4.0, y: —4.0 - 4.0, z = sin(z)
+ cosh(z), i?= —1.0.

\ i
Fig. 24. Julia set, x: 4.0 — 4.0, y: —4.0 — 4.0, z = sin{z)
+ cosh(z), i? = 0.0.

For example, Figs. 21 and 22 represent the same Julia
set, drawn in the common i? = —1 system and in the
i* = 3 system. Notice that the complex round shapes
have become converted to simpler angular ones, and
that the symmetry of the internal shape has changed
from 3-fold to bilateral around the x-axis. In general,
it is noticed that fractals under the i* = 0 system are
the least visually complex, followed by the i® > 0 sys-
tem. The ones produced by the common i = —1 sys-
tem seem to be the most morphologically interesting.

For any given fractal, changing the g-system from
—1 results in changes of scale, shearing, and folding.
It is also possible to study the properties of the systems
by observing the changes in a single function when its
Julia set is drawn in slowly-changing g-systems (i.e., a
movie is produced of the Julia set of the static function
f( ), where each frame of the movie represents a
slightly different i* value ). These movies clearly dem-
onstrate the shearing and stretching transformations
of a fractal image as it traverses the various number
systems.
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